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Abstract—In this paper the three-dimensional (3D) weight functions are derived for external circular
cracks. The solution method used is similar to that developed by Bueckner (/nt. J. Solids Structures
23, 57-93 (1987)) for internal circular cracks lying in infinite elastic solids. A Papkovitch-Neuber
potential is used to represent the tensile mode weight function field. This potential, derived from
some known solutions to a mixed boundary value potential problem by Galin (Contact Problems
in the Theory of Elusticity. School of Physical Sciences and Applied Mathematics. North Carolina
State College (1953)). aiso uniquely determines the shear mode weight function fields. The results
for internal circular cracks by Bueckner are presented for comparison and for completeness. For
external circular cracks. different forms of the weight functions exist corresponding to different
displacement boundary conditions at infinity. The Neuber fields, denoting the elastic ficlds of an
external circular crack due to remote forces and/or moments, are used to determine the weight
functions under various boundary conditions. The crack face weight functions, defined as the
intensity factors induced by a pair of equal, oppositely sensed unit point forces acting on the upper
and fower crack faces. are presented in closed formulae. In the Appendices the present results are
checked against some existing solutions, e.g. intensity factor solutions due to the point forces acting
along the central axis normal to the crack plane,

INTRODUCTION

The concept of “weight functions™ was first introduced by Bueckner (1970) for two-
dimensional (2D) elastic crack analysis. In Bucckner’s work, the weight functions constitute
the displacement field of a special clastic ficld which he referred to as a “fundamental field™,
A fundamental ficld satisfics the Navier displacement equations, cquilibrates zero body
forces and surface tractions. The displacements of that ficld arc of inverse square root
singularity in distance from a crack tip, in contrast to the normal square root dependence
of regular displacement ficlds. Applying Betti's theorem of reciprocity to the fundamental
field and the regular elastic field of a crack, Bueckner showed that the weighted average of
applied forces with the weight functions gives the crack tip stress intensity factors. This
gives a primitive interpretation of the weight functions as the point force solutions for the
stress intensity factors. Shortly after Bueckner’s work, Rice (1972) developed his weight
function concepts in a different way, showing that 2D weight functions could be determined
by differentiating the elastic displacement field with respect to crack length; hence the
knowledge of a 2D elastic crack solution for any one loading allows the crack solution to
be determined for the same body under any other loading systems. Following these works
there has been a vast literature on application of weight functions on 2D crack analysis.

The three-dimensional (3D) theory of weight functions, extending Bueckner's 2D
concepts, wis developed independently by Rice (1972), based on displacement field vari-
ations associated to first order with an arbitrary variation in position of the crack front,
and by Bueckner (1973), based on a 3D analog of fundamental fields that equilibrate null
forces with arbitrary distributions of strength of a normally inadmissible singularity along
the crack front. The 3D weight functions not only give stress intensity factors along a crack
front for arbitrary body force and surface force distributions, but also determine the first-
order variation in the displacement ficld associated with an arbitrary change in crack front
position {Ricc, 1985a). The latter property further allows the complete elastic field of a
cracked body to be determined by integration over a crack size variable from an uncracked
state just before the introduction of the crack, to the actual cracked state.

Rice (1985a) further developed a lincar perturbation approach that determines the
first-order variation of the elastic field for a crack being slightly perturbed from some simple
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Fig. I (@) An internal and (b) external circular crack in an infinite elastic body. (¢) The polar
coordinates .0 i the crack plane ; the are length tocation 7 along the crack front.

reference shape. The perturbation results can be used to address the configurational stability
ol crack front shapes during quasi-static crack growth and also to model the crack growth
in the medium of locally non-uniform fracture toughness. Morcover, Rice (1985b) showed
that the wetght function concept can be used to describe the 3D crack interactions with
sources of internal stresses such as transformation strains and dislocations. These powerful
properties of 31 weight functions motivate the search for their explicit solutions for various
crack geometrics.

Circular cracks are among those most heavily studied crack problems in fracture
mechanics, partly because of their mathematical simplicity. Bueckner (1977) determined
the tensile mode weight function field for an internal “penny-shaped™ circular crack, and
recently he (Bueckner, 1987) completed the derivation also for the shear modes by solving
for a class of fundamental ficlds represented by a Pupkovitch-Neuber potential function.
In the following we extend Buceckner's method to solve for the weight functions for an
external circular crack, formed as two elastic half spaces joined over a circular connection
areu. The solutions for internal circular cracks are presented for comparison and for
completeness.

TENSILE MODE WEIGHT FUNCTION FIELDS

An isotropic, homogencous clastic body is considered that is cracked inside or outside
a circular arca with radius ¢, corresponding to an internal (Fig. 1(a)) or an external circular
crack (Fig. 1(b)). A lixed Cartesian coordinate system x, v, = is attached to the circular
crack system so that the erack lines on the plane p = 0 and the origin of the coordinate
system is assumed to coincide with the center of cracks (more precisely, it is the center of
the circular connection for an external circular crack). Also for circular geometry onc scts
up associated polar coordinates r,0 in the x-= plane, with 0 being zcro along the positive
x-axis and increases toward the positive c-axis. Weight functions are denoted as
h,,(r.0.y 0" :a). which can be interpreted as the mode x intensity factor induced at location
0’ along the crack front by a unit point force in the j (j = x.y.z or r, 0. y) dircction at
position r, 0, y. The dependence of A, on the crack radius a is explicitly emphasized.

Onc may obscrve that the elasticity problem of a planar crack lying on the v = 0 plane
in an infinite elastic body, subjected to a pair of unit wedge opening forces on the crack faces
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can be formulated by Papkovitch—Neuber potential representations so that the displacement
field is expressed as (Galin, 1953)

U, = [(l +‘,)//E](FJ +,VY.¥)
u, = =2[(1=v)/EY+[(1 +¥)/E] Y,
u. = [(1+v)/EWF.+yY.) (1

where F and Y are harmonic functions related by F, = (1 —-2v)Y. Again a comma is used
to denote differentiations, e.g. F, = ¢F/¢y. By symmetry one knows that the displacement
u, should be an odd function of y, and so is the harmonic function Y. The stress components
that enter crack surface boundary conditions are calculated from stress—strain relations as

o,=—Y,+y¥,. o,.=y Y .. 0..=1Y,.. (2)
[t is seen from eqns (2) that there is no shear traction on the y = 0 plane. Thus the problem
of a wedge opening point force pair at position x’, z* (corresponding to r’, " in polar
coordinates) on the crack face is one of finding a function Y satisfying V*Y = 0, vanishing
at infinity, and generating stress a(x.z) = d(x—x')d(z —-=’) (Dirac 4 functions) within the
crack arca, and zero opening gap. i.e. Au(x, z) = 0 outside the crack area on y = 0. Hence
by eqns (1) and (2)

Yoo = —0(x—x)0(z~2"), inside crack area

Yoo =0, outside crack arca. 3

Note that an external circular crack system may have rigid body displacements at infinity
under the action of point forees. In that case the requirement Y = 0 at infinity corresponds
to imposing certain restraints there to suppress the rigid displacements. The reaction forces
and/or moments associated with those displacement restraints contribute to the total stress
intensity factors at the crack tip. For more relaxed displacement boundiry conditions such
as the completely free (no restraints) condition, some or all of those remote reaction forces
and/or moments should be taken off by superposing cqual and oppositely sensed net forces
and/or moments, and their corresponding contributions in the total stress intensity factor
expressions should be subtracted off, respectively. In this manner one can obtain different
forms of the weight functions, each associated with a different remote displacement boundary
condition. Further discussion on this will be left to a later section and for the present it will
be assumed that all displacements vanish at infinity.

The solution for the harmonic function Y that satisfies mixed boundary value con-
ditions (3) on a circular region with radius a (i.e. Y|, .. Y,l, .o given inside and outside a
circle) can be extracted from Galin (1953). Under the respective boundary conditions for
internal (Y = Y') and external (Y = Y*) circular cracks, they are expressed in cylindrical
coordinates r, 0, y as follows:

Yiir,0,v:r'0) = - Sg:((;) arctan {‘/((“- =t -)(\;;—Ir'-—y'+R))} )
sde

Ye(r,0.y;r,0) = - S.g::,((lﬂ arctan {\/((’ '—"')(\’/"+.:"-a‘+R))} (5)
paelt

where

d* =r=2rr" cos (0=0)+r*+p*

RZ — (a:—r: —_l':):+4(1:y2 (6)
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and sgn (v) = ¥/ v|. The full elasticity problem for a circular tensile mode crack subjected
to a pair of wedge point forces on the crack faces are then solved in terms of the potential
functions Y' and Y*. By superposition one can further calculate the stresses and dis-
placements under any distribution of applied forces.

It can be observed that by substituting eqn {(4) oreqn (5) into eyns (1) one can compute
the displacements u,. 1, and u. at {r. 6.y} due to a pair of unit opening point forces acting
on the crack faces at (7. 0°.07). for the respective internal and external circular crack cases.
By the elastic reciprocal theorem. those very same results for u,. w, and u. also represent
the opening gaps Au, on the crack faces induced at (+, 0. 0) by unit point forces at (.6, v)
in the respective x-, 1- and z-directions. One knows that in the near vicinity of the front of
an external circular crack the opening gap Auw, is asymptotically related to the mode [ stress

intensity factor by
8(1—v) r—ay .
All; ~ '*"*E**— - \/(—"zn—) K] . (7)

The same relation holds for an internat circular crack if one replaces #” —u by ¢ —r" in the
above equation. Equation (7) is an illustrative example of general asymptotic relations
between the stress intensity factors and the crack face displacement discontinuities. There-
fore, from the knowledge of the opening gap Aw, in the vicinity of the crack front, one may
also caleulate the tensile mode stress intensity fuctors induced by the unit point forces at
(r. 0.1 tn the respeetive x-, 1= and z-dircctions, These stress intensity factors define the a-,
v-and z-components of the tensile mode vector weight function /. That is

, . I 2r . ,
g fr 0y 0 a) = hm’ 8(1 —v?) v —u w (r Ly 0 0), {8)

The reciprocal interpretation of the 3D weight functions in eqn (8) generalizes an interpre-
tation given by Paris er af. (1976) in the 2D case.

The weight functions in eqn (8) are expressed proportional to the displacement ficld
induced by a puir of unit point forces on the crack faces, as the foree location approaching
the crack front. Similar relations can be generalized to the shear modes. The above suggests
that the weight functions can be thought of as the displicements of some special elastic
ficld. This field actually corresponds to Bueckner's fundamental ticld. Equation (8) shows
that the vector weight function A, satisfies the elustic Navier displucement equations.

Now use the cylindrical coordinates formed by r. 0, v. Let a, 0" denote an observation
point along the crack front. The limit in eqn (8) leads to the following representations for
the tensile mode weight functions k), (j=r.0,v):

hy, = —(1=20G*—yG* . hy, =21-v)G*—1yG*
g = — (L =20GH/r—yGH,Ir {9y

where for internal circular cracks, G* = G’ is related to the function Yi(r, 0.y 1", (F) by

. R ] ;,‘-2 s . ff L ‘:+ R
G, =lim - £ \/(,f" ) yi= .V ‘.,,,\n_[,(—_‘),‘,, Jla™—r ) ¥ ) (10)
. L] 8(1-—';") a-—r 8(““'\')\4'(UK ) d

and for external circular crucks G* = G°
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) E 2n J2sgn () J(FP+3i-a*+R)
G°, =1 5 - y° = - 5 11
v 8(1—»")\/(r —a> 8(1—v)/(an’) d ah

where now d° = r* —2ar cos (§ —8) +a’> +y°. The harmonic functions G' and G® are Pap-
kovitch~Neuber potentials representing the special fundamental field of tensile mode weight
functions in eqns (9). One can verify that G', ~ 1 /¥*, while G5, ~ 1/v as y approaches
infinity so that the function G° itself may not vanish at infinity. The weight function fields
are related to derivatives of the potentials G' or G*, and hence one can leave these potentials
indefinite within an arbitrary constant. It is obvious that both potentials G* and G' are even
functions of variable v and one can write

G =f G, dy. G :j’ GS, dy. (12)

In order to derive the explicit forms for G' and G* from their derivatives with respect to y,
follow Bueckner (1987) in adopting oblate spheroidal coordinates s, ¢ which are related to
the present cylindrical coordinates by the following :

r+iy = a cosh (s+ir) (13)

where i = \/— 1 denotes the imaginary unit. The oblate spheroidal coordinates s, ¢ are
convenient to describe circular cracks. One lets s,¢ be defined on the region
O<s< o, —n2 <t <n/2 for internal circular cracks and defined on —w <5 < w,
0 <t < m/2 for external circular cracks. With these choices the cruck faces are repre-
sented by 5 =0 (¢£> 0 on the upper face and ¢ <0 on the lower face) for internal
circular cracks, and by ¢ = 0 (v > 0 on the upper face and s < 0 on the lower face) for
external circular cracks.,
The following relations should be kept in mind

s, =1t,=sinh scos t/uN; s, = —1, = cosh s sin tlaN (14)

where N = sinh? s +sin? 1. For conciseness of presentation, from now on complex variables
are used during calculutions, understanding that the real parts of the final results are implied
for various real quantities such as the weight functions. One can further express G', and
G°, in terms of variables s, ¢ as

cosh? s+¢ sin ¢ cosh’ s+¢q |
e = 5 S
cosh” s—q aN cosh” s—¢ cosh 5™

GC — A B et i

¥ g—cos’ t aN

+cos® ¢ sinh ¢ sinhs 2cost
Y S ( $ cos , '> (15)

aN ~ g—cos’

where ¢ = (rfa) exp i(0—0) and A = [/[4(1 —v),/(an’)]. Note that ¢ is independent of
variable y. Equation (15), suggests that G' = G'(s. ¢), as observed by Bucckner (1987), so
that by directly carrying out the integration and letting G' vanish at infinity onc obtains the
explicit form for G' as

G,=A{ | | sinh s~ /(g—1)

=1 B sinh st J(g_1) THETarctn Ginh s)} (16)

which agrees with the solution derived by Bueckner (1987). Integration of eqn (15), needs
more care. Through some analysis one finds that it is not valid to assume G* = G*(1. ¢).
Since on the y-axis ¢ = n/2 = const yet one knows G* has to depend on the variable y on

SAS 25:2-8
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the y-axis. therefore G° should depend on all three variables s, 7. ¢. However, if one separates
G* into the following:

G°=Gy+G: (17)

with
GY, = A sinh sjaN, G, = “————1 . (18)

One now observes that G5, — 0 as r — 0. i.e. as the y-axis is approached. Therefore, G5 is
constant along the y-axis. For simplicity one can set that G vanishes along the y-axis. i.e.
Gili-. > = 0. It s then valid to assume G? = G(1. ¢). The s dependence of G° is absorbed
in the axisymmetric part G5. One can then carry out the integrations in eqns (18) to write

75 = A log [cosh s(1 +5sin 1)]

A (sin (= (L= (L+ (1 =¢))

Gi = Slog , . (19)
\=q) (sin 14+ (1=g)) (1= (1 =¢))
A constant has been dropped in the integration of G5 and the real parts of the right-hand
sides are implied in the above egns (19). The potential function G¢ for external circular
cracks is given by G° = G5 + GV The complex function /(1 —¢) is defined on a branch
such that Re [/(1 —¢)] > 0. with the branch cut along the line 0 = 07 along the crack
surfaces. One can also check that ¢ and G¥ have the same asymptotic behavior as the crack
boundary is approached. i.c. r — a. This is because in that himit plane strain conditions
should prevail.
It is interesting to observe that sinh s/aN = sgn (v) Re [Iri+ (v +ie)?} V7] so that
once can also write (75 us

G5 = A log (v -}-iu+\/(r2 + (vl +ia)"))
where the branch Re [/(r" 4 (13 +1))] > 0 has been taken.

It is worth pointing out that Bucckner (1987) derived the potential G for internal
circular cracks by assuming ' = G'(s, ¢) and solved the corresponding Laplace equation
dircctly. One can alternatively derive the non-axisymmetric part of the potential
G = G°~ G5 in an analogous way, Denoting ¢ = 1g = (d¢/r) exp (0" —0) and assuming
Ge(x, 1, 2) = G5(1.§) (§ — 0 corresponds to ¢ — ), it can be shown that

@*NVGE = G —tan ((GS, —2GGS,) =0, (20)
Of particular interest are the solutions tn the form of
G,y 2) =§'H,(0) (21)
for positive n, where by eqn (20) /1, satisfics

HI(+2n—=1) tan tH (1) = 0. (22

One solves eqn (22) and gets F1,(1) = B cos'™ " for constant B. It can be shown by eqns
(19) that the following relation is valid when constant B is equated to A:
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G, =2Y G:,; hence G°=G5+2Y G: 23)
LER1 ne
where
G: == “"A(rf ) COS""»“ t dr (24)
!

for n=1.2,..., and where the function G§ is defined in eqns (19). It is also helpful to
observe from eqn (24) that |G}] < A/cosh”s ~ O({™") as { = /(r’+7) = . Therefore,
G: has the correct asymptotic behavior at the remote field. For an internal circular crack,
analogous results were derived by Bueckner (1987) applying the reciprocity theorem to
elastic fields being “fundamental™ (with h, as its displacements) and “‘regular” (with real
displacements due to a point load) on the region bounded by crack surfaces excluding a
small cylindrical tube along the crack front. In that case

G'=Gy+2 ) G, (29
=1
where
N &
G, = -Aq"J (l/cosh™* ' s} ds (26)
forn = 0,1,2,.... Henee, one has found that the two cases of internal and external circular

cracks arc in parallel analogy to cach other except that G5 depends on both variables s and
t as is seen from egn (19) .

In the above we have derived Papkovitch-Neuber potentials that represent the tensile
mode weight function ficlds for internal and external circular cracks. These solutions
reproduce the internal circular erack results derived carlier by Bueckner (1987) and display
some unique feature for the potentinl G° of cxternal circular cracks. As discussed in
Bueckner's work the tensile mode potential also uniquely determines the shear mode weight
function ficlds. Hence one can also follow Bueckner's construction to obtain the shear mode
weight functions for external circular cracks. Before doing so, the shear mode ficlds for
internal circular cracks will first be examined.

SHEAR MODE WEIGHT FUNCTIONS FOR INTERNAL CIRCULAR CRACKS

In contrast to eqns (9), Bueckner has shown that the shear mode weight functions,
corresponding to displacements of some shear mode fundamental field, can be described
by shearing potentials g,. i, and ¢, as

by = =2(1=v)g, +3,.; by = =1 =20, +3p,,; hy= =200=0h+3yp./r (27)

where ¢ ranges over 2 and 3 representing in-planc and anti-planc shearing modes, respec-
tively. In writing eqns (27) we have cxpressed all quantitics in the cylindrical coordinate
system r. 0, y. Onc should note that the original derivations in Bueckner (1987) werc
expressed in Cartesian coordinates. It was also pointed out by Bueckner that thesc shearing
potentials g,, h,. —y, can be considcred as the components of a vector potential the
divergence of which vanishes. Following Bueckner (1987), complex potential functions that
arc also analytic in the complex variable r ¢ in the crack domain (e.g. ¢ = 0 for external
circular cracks) are referred to as being “‘crack-analytic”. Bueckner showed that a crack-
analytic potential G* can be used to construct displacements for the following two kinds
of shear mode fundamental fields.
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First kind
wp= =2l=v) " G4y, W= 21— + (),
= —2(l=v) e G*+fur
with
Y o=e" (GX+iGH/'r). (28)

Second kind

u = =20 =) [(1 =)Ly +HiL% )+, w) = =2(1 ="+ (7).

wy = =21 =W —iL2+ (V=) LY/ r -+ ir (29)
where " = — (1l —v}L*, and where another potential function L* is defined as
al* = (V1 +d> —r)Gr+2rGE+1G*. (30)

It can be shown that the function L* is hurmonic while L* s crack-analytic, Onc denotes
the fundamental field of the first kind gencrated by G* through cgns {28) by «(G*) and
the fundamental ficld of the second kind by u”(G*). The above two kinds of shear mode
ficlds equilibrate zero body forces and surfuce forees and give the pure mode 2 and
mode 3 shear fundamental fields, e, the shear mode weight functions, through lincar
combinations. The function L* can be analogously expanded as eqns (23) und (25) so that

L*=L3+2 % LY (30
not

The axisymunetric potential LY represents the part independent of the angular variable 0.

There exists a general principle among the weight functions for cracks of various cruck
geometrics. That is, these weight functions must, in the vicinity of the crack front, behave
asymptotically the same as those for a half-plane crack. In other words, the plane strain
conditions should prevail when the crack tip is approached. Near the crack boundary r = «,
asymptotic analysts can be carried out on the behaviors of the weight function fields of the
first and second kinds generated by G, (1 = 0,1,...), e, u'(G),) and u"(G)). Comparing
u’ (G and w'(GY) with the plane strain clastic fields, one can casily extract the pure mode
1T and mode If ficlds h.(G}) and h,(G)) by linearly combining them in a proper way.
Because all these ficlds are constructed by linear operators to the potential G, and the total
weight function fields are summed up according to eqn (25) as

h, = h(Gy)+2 ¥ h(G). (32)

"1

In this manner Bueckner (1987) showed that the mode 2 and mode 3 weight function ficlds
arc constructed as

(2=v)hy = ' (GH)/(1 =) +u"(G) —c " w(G' +GY)
C=vhy = —i(l =" (Gy) —in"(G) —i(l —v) ¢ " w(G' +G}). (33)

I

Therefore, the shearing potentials for internal circular cracks can be expressed as follows.
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Mode I

(2=v)g: = =" (G'+GYy),+ Ly, + (1 —v)L, +iLy/r

Q=h, = =i " (G'+Gy), +iLy, —iL, + (1 —v)Ly/r

(2"")\[’2 = _eitﬁ—ﬂ') (Glr+Gl0r+lG:9/r)"L10,t-(l —V)LII (34)
Mode III

(2=¥)gs = —i(1=v) €~ (G'+Gh), +i(l —v)(Ly— L), + Liy/r
Q2= = (1=¥) € (G +Gh), — (1 =¥ Ly, — L, —i(1 —v) Ly/r
@=ns = —i(1 =0 " (G + G, +iGh/r) +(Ly— L), ] (35)

where L' is related to G' by eqn (30) and L}, is the axisymmetric part of potential L'. One
can show that both G} and L), are constant on the crack faces and hence are crack-
analytic. It is also important to note that Lj generates the axisymmetric shear mode weight
function fields through the fundamental field of the second kind listed in eqns (29).

For convenience we also present here the following quantities that appear in the above
eqns (34) and (35):

O

Jg=1  Tsinhs+J(g—1)

Gy = Alarctan (sinh 5) —n/2]

inh s — -1 .
G = A{ ! log sinh s~ /(g = D) +n/2 —arctan {sinh s)}

L= A sin t(1+ @)+ (y/a)(gGy+G")
= e R

A sin 1+ (y/a)G,. (36)

Ly

The above results enable one to caleulate the shear mode weight functions for internal
circular cracks. It is clear from the above results that the shear mode weight functions are
determined solely by the tensile mode potential G'. This method by Bueckner of constructing
shear mode solutions from the tensile potential is very important for other crack geometrics
too, as will be shown in the next section for external circular cracks.

SHHEAR MODE WEIGHT FUNCTIONS FOR EXTERNAL CIRCULAR CRACKS

Bucckner's (1987) method of deriving shear mode weight functions from the tensile
mode potential for internal circular cracks is extended to the case of external circular cracks.
Similarly a potential L° can be related to G by eqn (30). One can note that the axisymmetric
potentials G5, L}, are both harmonic but not crack-analytic. Hence Bueckner's fun-
damental fields of the first and second kinds in eqns (28) and (29) cannot be applied to
G4 and Lj. The detailed process of deriving the shearing potentials for external circular
cracks is similar to Bucckner’s derivations for internal circular cracks except that the
axisymmetric shear mode weight function ficld for an external circular crack is generated
by the potential G§ = — A(1 —sin 1) exp (' —0)/r, as defined in egn (21) for n = |, through
the fundamental field of the first kind in egns (28), in contrast to that gencerated by G
through the field of the second kind for internal cracks, A potential L? is defined in terms
of G¢ as

ali = (y*+a’—r’)G:, +2ryG:, + G, (37)

Analogous asymptotic analysis on u’(G5) and u"(G?) (n = 1,2,...) allows one to extract
the pure mode Il and mode 11 weight function fields from proper linear combinations of
them. The potentials G| and G, behave asymptotically similar to each other near the crack
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front (as they should) and one can take full advantage of the intermediate results presented
by Bueckner (1987). Observing that similanity one can state the final results without any
further derivation:

Q=vh, = (G)—e ™ w(GY. 2—vIh; = —iw(GH)—ie ™ u(G") (38)

where one has adopted the notations G = G?—vG§ and G'" = (1 — )G +vGY. The shear-
ing potentials are then expressed as follows.

Mode [1
(2-")!}: = —e" G.'_‘l»*'“ *i')Lf,-FiLf,,,;’r
Q=vy = =i G —iLs, + (1 =v)LS/r
Q= = =[GV iGN/ -1 ~viLS,. (39)

Mode i

(2-v)g.= —ie"" G i1 =)L, + LE,/r
2=y =" G L ==Ly
Jewpo= =i G HIG )+~ )L (40)

Thercetore, only the function (75, i.e. the non-axisymmetric part of the potential %, is needed
to construct the shearing potentials ¢, 7. and o . Listed here are the quantities that appeared
in cqns (39) and (40) for the convenience of readers.

A log CGin =1 =g) 1+ /U =g
J=q) ® (sin 1+ JU=gy (1=J(1—gq)
G5 o= Alalr)(sin - 1) exp (U =0)

G =

24 sinh s(—=sin 0 +(/a)GE
l—y b

It should be emphasized that cqns (39) -(41) permit one to calculate the shear mode weight
functions for external circular crucks when remote displacements are fully constrained.
These results are checked against some special known results in Appendix A.

As discussed previously, in order to compute the weight functions under reluxed remote
displacement boundary conditions one needs to superpose equal and opposttely sensed net
reaction forces and/or moments at infinity to take off the corresponding displacement
restraints.

NEUBER FIELDS

Neuber (1937) solved the elasticity problem of hyperbolic circumferential notches
subjected to forces and/or moments at infinity. He derived the full field solutions for the
displacements and stresscs. An external circular crack can be treated as a degenerated
hyperbolic notch. Therefore, the notch solutions given by Neuber can be directly used for
external circular cracks. Neuber tields are presented below for later application.
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Fig, 2. The loadings of an external circular crack in Neuber ficlds: () teasion: (b) bending:
(¢} torsion ; {d) shear,

Remote tension
This case corresponds to an external circular crack subjected to a puir of remote
centered forees of magnitude F (Fig. 2(a)). The associated remote displacement ¢ [ = u,{(x0}]

ts
¢ = (1 =vFIQ2Ea). 42)
The complete displacement fickd is expressed as

u, = —(1=20)GY—yG%, wy = (1 =2)G/r—yGN/r,

TS

u, =2(1-v)GY —yGY, (43)

¥

where the Neuber potential G can be presented in spheroidal coordinates s, £ as

G~ = - (Y arctan (sinh $) +sin ¢ —log [cosh s(1 +sin 1)] ). (44)
m(l —v)\u

Equations {43) and (44) cnable one to determine the displacements throughout the entire

cracked body under the action of remote centered forees.

Remote bending

Without loss of gencerality, consider the crack system subjected to a couple of remote
bending moment M about the z-axis (Fig. 2(b)). In this case the induced remote rotation
3 [= du (0)/dx}is

IM(1L—v?)
3= T 4Ea @

The full displacement ficld is similarly expressed by eqns (43) in terms of the following
potential G
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. a‘3cost ' .
GY = {C l:‘l arctan (sinh s) +sin tjl— q;(l —sin’ t) — g(sin r— l)}. (46)

()

Torsional field
The displacements due to a couple of remote torque of magnitude M (Fig. 2(c))
constitute a pure torsional field. The remote rotation 3 [= u,(x)/r] is

3M(L+v)
g= 0T
SEd* =7

The displacements for the above torsional field are all zero except
29r . . N
wy, = ~~7»T~(urctan (sinh s) +sinh s/cosh” s). (48)

Remote shear forces

Consider, without loss of generality, a pair of shear forces of magnitude P in the + x-
directions acting at y = + o (Fig. 2(d)). The body is restrained against rotation in the x-
v plane. In this case the remote displacement ¢ [= u ()] is

o (! f")(l—\')l’

T 49
4alk 49
The displacement field is described by three potentials ¢, Y, ™ so that
= =200 =) g gl = =2 =Nyl w = — (=200 Y (50)
The potentials are written as
N ¢ retan (sinh ) o inh s(1 —sin 1)? ]
g = —arctan (sinh s , sinh s(l =3 = | cos
q (1 —v) + Yy i sinh s(1 =sin cos
N ¢ , voat R
o= arctan (sinh )+ , sinh s(1 —sin )" { sin 0
n(l—v)[ 2—vr-
20« X
Y= - (I —sin 1) cos 0. (51)
n(2—v) r

By the formulae under the remote loading in the above four cases, one can further construct
the displacements at an arbitrary spatial position due to arbitrary remote forces and
moments.

EFFECT OF REMOTE BOUNDARY CONDITIONS

The weight functions, as displacements of Bueckner's fundamental clastic ficld, should
satisfy the correct displacement boundary condition for the given crack geometry. The
weight functions for external circular cracks presented in previous sections arc correct only
if the pre-assumed zero displacement conditions at infinity arc indeed valid. In most of the
cascs it may not be so because point forces can generate rigid body displacements throughout
the entire body. This dependence of the elastic field on the remote displacement boundary
conditions was observed by Bucckner (1973). Later Stallybrass (1981) calculated the remote
reaction force and moments associated with a wedge opening point force pair on the crack
faces and gave the stress intensity factor induced by that force pair under a completely
free boundary condition at infinity. Here the effect of the remote boundary conditions is
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investigated on general weight functions for external circular cracks based on the previously
given Neuber solutions.

Anexternal circular crack system is first considered with no restraints at infinity against
displacements. Alternatively denote the respective vertical, radial and tangential directions
y.r’. 0 associated with an angular position # along the crack front by 2 = 1,2, 3, respec-
tively. One may observe that the reciprocal relation in eqn (8) can be extended to shear
mode weight function fields so that

V Ay [ 2m .
o (r.0. 530" a) = lim 2 \/ (r'—:})“i’f(" 0.v:r.0) (52)

¥ —=d

(superscript f emphasizes the completely free conditions) where the matrix A, is diagonal
with

Ay = Ay = E[(1=v%), Ay = Ef(1+v). (53)

The matrix A, is proportional to a prelogarithmic energy factor matrix in the expression
for the sclf energy of a straight dislocation line. The notation u (r. 6. y:r". ) denotes the
Jth component of the displacement field at r. 8, v duc to a pair of point forces at the crack
face location #/{, pointing in the + f-directions. A wedge opening, radial and tangential
point force pair on the crack faces correspond to ff = 1,2, 3, respectively. The total dis-
placement ficld o, (r, 0, v 7' 0') can be divided into two parts

ui, = U, + U, 54

where the i, are the displacements under the fully constrained condition at infinity and 4,
are the additional displacements when the remote restraints are taken off. In fact i,
correspond to the Neuber ficlds generated by the remote reaction forees and moments,

For convenience one can adopt here several notations to denote the Neuber fields
associated with remote forces and moments. Let E(r) and r4(r) denote the jth component
of the displacement field at r associated respectively with a pair of forees and moments of
unit magnitude in the &-direction at oo, We understand the direction & to be fixed in
space. Subscripts x = 1,2, 3, are used to denote the components of the displucement vector
in the v-, r*, @-directions (i.e. the vertical, radial and tangential directions at r', 07, y). Henee
one lets AZ(r 1y and Afi(r', ) denote the component in the z-direction of cruck face
displacement discontinuities at location .. Functions &, n*. AZX(r',07) and Ani(r', 0)
are readily extracted from the Neuber solutions given in the last section.

Therefore one can write #,, as

U (r 0. yir 0y = —Pu(r 00 (r 0, p) = My (r' 0)i(r, 0, 1) (55)

where P (v, 07), M (r 87) arc the components in the A-direction of remote reaction force
and moment vectors duc to a pair of point forces in the + z-directions at crack face location
r' . Applying the reciprocity theorem to the elastic field with unit point force pairs with
no displacements at infinity and Neuber fields with remote displacements ¢ and 3 one finds

2P (r 0y = =AY similarly 23M . (r . 0) = —Ai(r.0). (56)

Hence the reaction forces and moments at infinity are related to the crack face displacement
discontinuitics of the Neuber fields.

It is now straightforward to write the remote reaction force P, and moment M.,
associated with a wedge opening (2 = 1), radial (x = 2) and tangential (x = 3) unit point
force pair at the crack face location 7', @. The non-zero components of P, and M,, arc
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The results due to wedge point forces (x = 1), P, and M, match those given by Stallybrass
{1981). Stallybrass obtained his results for remote reaction force and moment associated
with a wedge opening point force pair acting on the crack faces by integrating the stress
ficlds within the connection area to calculate the net force and moment on each horizontal
plane v = const. Here one has shown that Neuber fields greatly simplified the calculations.
Equations (57) also suggest that it is most convenient to resolve the remote reaction forces
and moments in the #'-, (-, yp-directions, i.e. & = r #,y. The Neuber fields & and n}
generated by these forees will depend on the orientation angle ¢ so that one may now write
them as E(r, 0,30 1) and o (r. 0.y 0" L a). Substituting cqns (54). (55) and (57) into egn
(52}, one can show that the weight tunctions under the completely free condition are given
by

Hor 0.y 0 a0) = h(r 0, v 0 @)

F (A SRV 5 0 v 0 sy b a gt (e 0,y 0 )] (58)
where 2, and . Z, are constant matrices the non-zero components of which are
ifyh. = f;"z, ;fxlr' = {f "“\'};{{2‘"")* .'y\,r == if(?.wl’)‘ n{f;;;x = .4 3, i. {59}

Hence we have completed the derivation of the weight functions under the completely free
condition. In cgn (58) the terms containing .2, and .4, represent the contributions from
Pyoand M.

It has been shown thut the difference between the weight function ficlds under the
completely restrained condition and those uader the completely free condition is lincarly
proportional to Neuber fields. In fuct, it was observed by Bueckner (private communication)
and also suggested by eqns (44) and (46) that the potential

G'=Gh+2 }: G (60
e}

where
GY = A{{y/a) arctan (sinh s) +sin 7]
G
Gi=G: for n>1i 6h

Wty

i

BA2) r/@)(v/a) arctan (sinh s)+sin ] - (a/3r) sin tcost )} e

directly determines the tensile mode weight function field through eqns (9) under the
completely free condition, i.c. when the solid is free to move at infinity.

A solid with an external circular crack has six degrees of freedom for all possible rigid
body displacements at infinity. i.c. three translations in the x-, y-. z-directions and three
rotations about the x-, y-, z-axes. In the above onc has shown that when the remote rigid
body displacements are completely suppressed, a pair of point forces at crack face location
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r’, 8 would be balanced by a reaction force vector P, and a moment vector M, at infinity.
Each of the six components P,;. M,, (j = x.y.2) is associated with a degree of freedom.
Therefore, if some degrees of freedom are lifted to relax the displacement restraints, the
associated components of vector reaction force and/or moment should be taken off by
superposing equal and oppositely sensed forces and/or moments, respectively. For general
mixed mode loading one could have as many as 2° = 64 kinds of different displacement
restraints at infinity, ranging from the completely restrained condition to the completely
free condition. Nevertheless the derivation of the weight functions for all these different
boundary conditions are essentially similar to that presented in this section for the com-
pletely free condition except that in those cases only contributions from relevant components
of reaction force and moment should be subtracted from 4,,, the weight functions for the
fully restrained condition.

AXISYMMETRIC WEIGHT FUNCTIONS FOR EXTERNAL CIRCULAR CRACKS

In practice one often encounters the simpler case that the applied forces on a cracked
body are axisymmetrically distributed. It is desirable to have explicit expressions for the
axisymmetric weight functions, defined as

{ n
fu= 5 L h,; dO (62)

for j = r. 0. y. These axisymmetric weight functions are associated with the intensity factors
due to axisymmetric ring loads at arbitrary location r, 3.
Using the notation

F= (I/Zn)ﬁ Fdo
(]

it follows by eqns (23) that G¢ vanishes. From the definition in egn (37) one observes that
L also vanishes. Using Cauchy’s integration theorem onc cin verify the following results
for the axisymmetric potentials G%, g, h,, §, as:

G =G5 ga= —Ala/rsin 0),, §,=Asint/aN, hy = Ala/r)(sin 1),  (63)

(other potentials are zero). These potentiuls determine the axisymmetric weight functions
through

k= =(1=2v)G5,—3G5,,: ki, =201 =v)G5, —¥G5,, (64)

h, = =20=0g,+w,: k= —(=20,+30,,; ko= =201-k, (65

¥

(other weight function components are zero). An interesting observation is that §, = 0
when 1 = 0, and hence &, = 0 on the crack faces. That is, the axisymmetric normal loads
on the crack faces do not induce a mode 2 singular stress field at the crack tip. This
observation generalizes an earlier 2D result by Erdogan (1962).

Under the completely free condition at infinity, additional contributions to the weight
functions from the remote restraints need to be superposed. Integrating eqns (58) over the
variable ¢ gives the solutions immediately. For example, for crack face loading one has
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f.=h +—~l~~*~cos‘l <f)
SO T % M r

- _ 3 a\ a* | a
h(,w=h}0+ %W[COSI <;>+ ;:7\/(1—'"‘—:>:| (66)

Hence we have provided the axisymmetric weight functions for external circular cracks.
Some of these results, e.g. the solutions corresponding to rings of shear loads are believed
to be new. [t is clear that the remote displacement boundary conditions play an important
role in these weight function fields.

CRACK FACE WEIGHT FUNCTIONS FOR EXTERNAL CIRCULAR CRACKS UNDER
RESTRAINED DISPLACEMENT BOUNDARY CONDITIONS

In practice. crack face weight functions are often needed in closed form. They play an
important role in pursuing the perturbation analysis of calculating the first-order variations
of clastic field of a cracked solid when the shape of the crack is perturbed from some
reference geometry (Rice, 19854 ; Gao and Rice, 1986, 19874, b Gao. 1988).

Under the restrained displacement boundary condition at infinity when all rigid body
displacements at infinity are fully suppressed, the full-ficld weight function solutions for
external circular cracks are presented in eqns (9) and (19) for the tensile mode and in eqns
(27) and (39) (41) for shear modes. One can carry out the algebra in those expressions on
the crack faces where one of the spherotdal coordinates ¢ vanishes. When this is done one
finds

ko (r 0 a0y =k = J(r —a®)fan?)

d-
k d a .
kofr 0.0 a) = ~ 2 cos A4+ [v=2-2vcos 2/]
2—v r r
, 28 Vd . a . .
kio(r,0.0:a) = 5 sin A—v - sin 24
2—v{r r
2k d . . a . .
Kulr,0:0 0y = — s (I —v) -sin A4v-sin 24
2—v r r

k {
ki, 00 ay = o -- {—-2(! _\.)‘, cos A+ “ [2—v—2vcos 2}.]}
2—v r r
ka(ro0:0V ;@) =k, =ky=k,=0 (67)

where « is the distance between 7,0 and o, 0, and 4 is depicted in Fig. 3. The following
supplementary geometrical relations are listed here:

cos A= [u—rcos ( =0)}/d: sin 2= —rsin ((F—0)d

cos 24 = 1 =27 sin® (" =0)/d*; sin 24 = —2[a—r cos (' —D)]r sin (0" —0)/d".(68)

The mode | crack face weight functions &, exist in the literature (Kassir and Sih, 1975)
(note that the displacement boundary condition at infinity was not specified in their work).

As verification eqns (67) can be checked against special solutions in two limiting
situations : v — 0 and a — 0. In the first case, basic analytical solutions are known and the
second case corresponds to a half-plane crack. It is shown in Appendix B that these solutions
do approach the correct limits in the above special cases. Besides these limiting cases, eqns
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Fig. 3. Geometrical parameters 4. 4 of an external circular crack.

(67) have been used (work in progress), via Rice’s (1983a) perturbation technique, to derive
the first-order results for external cracks with fronts deviating slightly from circles. Those
results also mateh the first-order expansion of some of the existing analytic solutions in the
literature (c.g. elliptic cracks under shear) for arbitrary values of v and a.

CRACK FACE WEIGHT FUNCTIONS UNDER OTIHER REMOTE BOUNDARY CONDITIONS

There are different forms of weight functions for external circular cracks associated
with various displacement boundary conditions at infinity. One can likewise categorize the
crack face weight functions according to the remote boundary conditions.

FFor the completely free condition, ie. no displacement restraints at infinity, it follows
from egn (S8) that

X 1
K (r 0.0 a) =k, (r,0;0 0} + \7%‘7 [yakAff(r,(}; 0 a)+all udr(r,0;0 a)]  (69)
rd

where matrices 2, and ./, have been listed in eqns (59). The functions Aéf{r,():()';a)
and Aik(r, 00" a) denote the crack face displacement discontinuities in Neuber fields.

If the remote boundary condition is such that the remote rigid body displacements are
only partially suppressed, then eqn (69) needs to be modified according to the superposition
rule discussed above. Distinguish the following contributions to the weight functions from
remote reaction forces and moments:

kY, = P /Qa(ma)), kY, = 3M, cos (0’ =0)/(2a*/(na)),

ki = 3M3,(n)/(4a* [ (ra)), k% = Py(r) cos (0—0')/Qay(ra)),

kS = Py (r) sin (0—0)/(2a/(ra)). k% = Py(r) sin (0—0)/(2a,/(na)),

k3o = Pyu(r) cos (0—0)/(2ay/ () (70)

where P,,(r) and M, have been given in eqns (57).
The following six kinds of typical conditions are considered.

Case (1)
Completely restrained condition, i.e. all displacements vanish at infinity. In this casc
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one simply has
K =k, (70
where &,, are expressed in eqns (67).

Case (it)
Remote displacements all suppressed except for translation in the y-direction. In this
case the crack face weight functions are

AW =k kT {72

(all other &% = k,,). Equation (72) coincides with the solution given by Tada et al. (1973),
although they did not specify the condition under which their solution would be valid.

Case (iif)
Remote displacements all suppressed except for rotations about the v- and z-axes. In
this case

= kA (73)
(all other &4 = &, ).

Cuse (iv)

Remote displacements all suppressed except for translation in the x-direction. In this
case the tensife mode crack face weight functions remain unchanged whercas the shear
mode results are

G152 BN . A N ;
Y =k +kI cost) (74)
where v = 2, 3 for shear modes.

Cuse (v)
Remote displacements all suppressed except for rotation about the p-axes. In this case
all other &,, remain unchanged except

ko= ko + AL (75)

Cuse {vi)
Completely free condition, i.e. no displacement restraints so that all displucements are
allowed. In this case

K =k, +h3+KE, (76)

for all modes x = 1.2, 3, where contributions from all reaction forces and moments are
taken off. The mode | result rederives that given by Stallybrass (1981).
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APPENDIX A WEIGHT FUNCTION SOLUTIONS IN A SPECIAL CASE

The weight function solutions for an external circuliur crack presented here are novel. It s hence desired to
show its consistency with some existing special case solutions. For example, the stress intensity fuctors induced
along the front of an external circulur crack by concentrated forces on the y-axis were given by Kassir and Sih
(1973). These results give the special weight function solutions for external circular cracks on the y-axis (¢ = n/2).
Through some algebraic manipulation one obtains from eyns (27) and (39)-(41) of the text the weight functions
on the y-uxis as

wrw (I — 9,2
0, = :':ﬁﬁ;f,f{,_ﬁ(, L )

-t

Aa 22
By = e oy B =20 gy
a+y° u+y°

(1 =v){(3=2v)Ay sin (V' =0)
Q—v)a’ +y°)

2 T
(I —vHa +37}

B
#
t

(L= v)dy cos (1) =) (3 a4 222 —v)a? )

(Al)

hy, =

(h;, = 0). The solutions of egns (A1) match the results presented by Kassir and Sih (1975). Kassir and Sih failed
to specify the proper boundary condition necded for the above results to be valid, That is, eqns (A1) are correct
only when remote displacements are fully constrained, i.e. no displacements at infinity.

Again one can casily find the solutions under the completely free condition by eqns (58) of the text. For
example, it is trivial to show from eqns (38) that

it =»~—j-——~ arctan {v/a) + & Lo o A2)
Y Xyt a4yt (=v¥a+3y)) | (A2

This. is cpnsi.x:tcnt with a solution for the mode | stress intensity factor due to a pair of tensile forces acting on the
y-axis given in Tada et af. (1973), although they did not specify the proper remote boundary condition for the
above solution to be valid.
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By definition the above wetght function results can be used to construct solutions for the intensity factors
induced by an arbitrary distribution of forces along the y-axis under remote displacement restraint conditions. A
peint force in the tangential #-direction on the v-axis is irrelevant here since 1t is equivalent to a radial force in
the 0+ 1.2 polar direction.

APPENDIX B: CHECKS OF THE CRACK FACE WEIGHT FUNCTION FORMULAE

The crack face weight functions presented in eqn (67) can be checked against the following special himiting
cuses

Case l.v =0
In the absence of body forces three harmonic functions F. F.. H (Sih and Lichbowitz, [96%) can be used to
generate the spectal field of shear mode crucks. While the following is satisfied ©

H, =F +F.. (B1)

the displucement field s represented as

u, = = 20—y EJF, +[(1 +v) ElyH
u, = {1+ vV EJL = 2v)H +v1 ]
TR I (RIS - F OIS (R RS 1 o 1O £ (B2)

The stress field is derived by stress strain relations as

L R N L R0 VNN T 7S 0 7 N

a,, = (L —v}F vl v, (B3

Now without loss of generality, consider that the cruck faces are oaded with o paic of unit concentrated forees
in the & v-direction acting at the location v/ 2", The elasticity problems of a shear mode crack this loaded are
completely governed by the harmome functions £, F.oand £, henee can be formalated as seeking these unknown
potentials that vanish at intinity having the boundary condition that on the plane v = 0

Ao = Floe 00 outside erack aren (B4
and

[ (b=, vl |, =0, s
) witlin crack area.
P—th = F vl ], Ly = S X0z =27y, (B35}

Although the solutions to the harmonic function Fo £, /7 under the above boundary condition s difficalt to
find, the special case ol v = turns out to be interesting, o that case it is casy to show that F, = 0 and F satisties
VF, = 0 with

Fooo= =0l =)0z~ 27), within crack arca

v

F, =0, outstde crack arca. (B36)
Comparing the above with the egns (3) of the text, one can note immediately that F_ should have the same
mathematical solutions as the tensile mode potential function Y. 1t also follows from eqns (B3 and eyns (2) of
the text that on the crack plane v = 0. o, has exactly the same solution as the tensile mode stress distnbution 7,
Theretore, one can reach the conclusion that in the case of v = 0 the shear mode eracks have the same distribution
of the stress ficld as that of tensile cracks, and the traction on the plane y = 0 is in the sume direction as that of
the concentrated foree pair. Therefore, it is clementary to show from the definition of the stress intensity factor
that when v = 0

ky =kcos (=0, kg = —ksin (=)
Ky =ksin(00=0y; ky =kcos ((F—0). (B7)

Now letting v = 0 in egns (67) of the text, and using the geometrical relations of egns (68). one can see that
those solutions match eqns (B7).

Cuse 2. a = 1 de. q half-plane crack

One may observe that in the limit @ — . the circular crack becomes a half-plane crack. Therefore egns (67).
in the same limit, should approach the corresponding solutions for crack face weight functions for o half-plane
crack. Assuming in that limit the crack front lies along the s-axis and x > 0 denotes the crack fuce (Fig. Bl the
polar coordinates r ) in the crack plane are repliced by Cartesian coordinates v, = in the following maaner:
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Fig. Bl. A half-plane crack lying on the y = 0 plane with its tip along the z-axis.

r-a—x. afl —» —:. (B8)
Using the following asymptotic relations when @ —» x
dsini=—+z; dcosi= —x
disin 24 =2x(z'=2); dicos2i=x —(~2)} (BY)

where now ¢ = x?+ (2" —1)% is the squarc of the distance between a point x. : on the crack face and a point 0, =
along the crack front. It can be shown that eqns (67) are reduced to

2x/nH'?
=k =,k =k =k =k, =
ky,, =k =7 k, k. H 0

ks = ki,
kyw =k,

—ky =k,

—k, =k, = (B10)

FEquations (B10) match the correct point force intensity fuctor formulae for a half-plane crack (Tada ef al., 1973).
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